search
for
 About Bioline  All Journals  Testimonials  Membership  News  Donations


International Journal of Reproductive BioMedicine
Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences of Yazd
ISSN: 1680-6433
EISSN: 2008-2177
Vol. 15, No. 6, 2017, pp. 331-344
Bioline Code: rm17044
Full paper language: English
Document type: Review Article
Document available free of charge

International Journal of Reproductive BioMedicine, Vol. 15, No. 6, 2017, pp. 331-344

 en The etiologies of sperm DNA abnormalities in male infertility: An assessment and review
Pourmasumi, Soheila; Sabeti, Parvin; Rahiminia, Tahereh; Mangoli, Esmat; Tabibnejad, Nasim & Talebi, Ali Reza

Abstract

The sperm DNA damage may occur in testis, genital ducts, and also after ejaculation. Mechanisms altering chromatin remodeling are abortive apoptosis and oxidative stress resulting from reactive oxygen species. Three classifications of intratesticular, post-testicular, and external factors have been correlated with increased levels of sperm DNA damage which can affect the potential of fertility. Alcohol consumption may not increase the rate of sperm residual histones and protamine deficiency; however, it causes an increase in the percentage of spermatozoa with DNA fragmentation and apoptosis. In a medical problem as spinal cord injury, poor semen parameters and sperm DNA damage were reported. Infection induces reactive oxygen species production, decreases the total antioxidant capacity and sperm DNA fragmentation or antigen production that lead to sperm dysfunctions and DNA fragmentation. While reactive oxygen species generation increases with age, oxidative stress may be responsible for the age-dependent sperm DNA damage. The exposing of reproductive organs in older men to oxidative stress for a long time may produce more DNA-damaged spermatozoa than youngers. Examining the sperm chromatin quality in testicular cancer and Hodgkin’s lymphoma patients prior to chemotherapy demonstrated the high incidence of DNA damage and low compaction in spermatozoa at the time of diagnosis. In chemotherapy cycles with genotoxic agents in cancer patients, an increase in sperm DNA damage was shown after treatment. In overall, those factors occurring during the prenatal or the adult life alter the distribution of proteins associated with sperm chromatin induce changes in germ cells which can be detected in infertile patients.

Keywords
Sperm; Chromatin; DNA fragmentation; Male infertility; Reactive oxygen species

 
© Copyright 2017 - International Journal of Reproductive BioMedicine
Alternative site location: http://www.ijrm.ir

Home Faq Resources Email Bioline
© Bioline International, 1989 - 2020, Site last up-dated on 29-Jan-2020.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Internet Data Center of Rede Nacional de Ensino e Pesquisa, RNP, Brazil